	Q:
	What is the difference between an Interface and an Abstract class? 

	A:
	An Abstract class declares have at least one instance method that is declared abstract which will be implemented by the subclasses. An abstract class can have instance methods that implement a default behavior. An Interface can only declare constants and instance methods, but cannot implement default behavior. 

	
	


 TOP


Java Interview Questions
	Q:
	What is the purpose of garbage collection in Java, and when is it used?

	A:
	The purpose of garbage collection is to identify and discard objects that are no longer needed by a program so that their resources can be reclaimed and reused. A Java object is subject to garbage collection when it becomes unreachable to the program in which it is used. 

	 
	
TOP 



	Q:
	Describe synchronization in respect to multithreading.

	A:
	With respect to multithreading, synchronization is the capability to control the access of multiple threads to shared resources. Without synchonization, it is possible for one thread to modify a shared variable while another thread is in the process of using or updating same shared variable. This usually leads to significant errors.  

	 
	
TOP 



	Q:
	Explain different way of using thread? 

	A:
	The thread could be implemented by using runnable interface or by inheriting from the Thread class. The former is more advantageous, 'cause when you are going for multiple inheritance..the only interface can help.

	 
	
TOP 



	Q:
	What are pass by reference and passby value? 

	A:
	Pass By Reference means the passing the address itself rather than passing the value. Passby Value means passing a copy of the value to be passed. 

	 
	
TOP 



	Q:
	What is HashMap and Map?

	A:
	Map is Interface and Hashmap is class that implements that.

	 
	
TOP 



	Q:
	Difference between HashMap and HashTable?

	A:
	The HashMap class is roughly equivalent to Hashtable, except that it is unsynchronized and permits nulls. (HashMap allows null values as key and value whereas Hashtable doesnt allow). HashMap does not guarantee that the order of the map will remain constant over time. HashMap is non synchronized and Hashtable is synchronized. 

	 
	
TOP 



	Q:
	Difference between Vector and ArrayList?

	A:
	Vector is synchronized whereas arraylist is not.

	 
	
TOP 



	Q:
	Difference between Swing and Awt?

	A:
	AWT are heavy-weight componenets. Swings are light-weight components. Hence swing works faster than AWT.

	 
	
TOP 



	Q:
	What is the difference between a constructor and a method? 

	A:
	A constructor is a member function of a class that is used to create objects of that class. It has the same name as the class itself, has no return type, and is invoked using the new operator.
A method is an ordinary member function of a class. It has its own name, a return type (which may be void), and is invoked using the dot operator.

	 
	
TOP 



	Q:
	What is an Iterators?

	A:
	Some of the collection classes provide traversal of their contents via a java.util.Iterator interface. This interface allows you to walk a collection of objects, operating on each object in turn. Remember when using Iterators that they contain a snapshot of the collection at the time the Iterator was obtained; generally it is not advisable to modify the collection itself while traversing an Iterator.

	 
	
TOP 



	Q:
	State the significance of public, private, protected, default modifiers both singly and in combination and state the effect of package relationships on declared items qualified by these modifiers.

	A:
	public : Public class is visible in other packages, field is visible everywhere (class must be public too)
private : Private variables or methods may be used only by an instance of the same class that declares the variable or method, A private feature may only be accessed by the class that owns the feature.
protected : Is available to all classes in the same package and also available to all subclasses of the class that owns the protected feature.This access is provided even to subclasses that reside in a different package from the class that owns the protected feature.
default :What you get by default ie, without any access modifier (ie, public private or protected).It means that it is visible to all within a particular package.

	 
	
TOP 



	Q:
	What is an abstract class?

	A:
	Abstract class must be extended/subclassed (to be useful). It serves as a template. A class that is abstract may not be instantiated (ie, you may not call its constructor), abstract class may contain static data. Any class with an abstract method is automatically abstract itself, and must be declared as such.
A class may be declared abstract even if it has no abstract methods. This prevents it from being instantiated.

	 
	
TOP 



	Q:
	What is static in java?

	A:
	Static means one per class, not one for each object no matter how many instance of a class might exist. This means that you can use them without creating an instance of a class.Static methods are implicitly final, because overriding is done based on the type of the object, and static methods are attached to a class, not an object. A static method in a superclass can be shadowed by another static method in a subclass, as long as the original method was not declared final. However, you can't override a static method with a nonstatic method. In other words, you can't change a static method into an instance method in a subclass.

	 
	
TOP 



	Q:
	What is final?

	A:
	A final class can't be extended ie., final class may not be subclassed. A final method can't be overridden when its class is inherited. You can't change value of a final variable (is a constant).


	Q:
	What if the main method is declared as private?

	A:
	The program compiles properly but at runtime it will give "Main method not public." message.

	 
	 
	
TOP



	Q:
	What if the static modifier is removed from the signature of the main method?

	A:
	Program compiles. But at runtime throws an error "NoSuchMethodError". 

	 
	 
	
TOP



	Q:
	What if I write static public void instead of public static void?

	A:
	Program compiles and runs properly. 

	 
	 
	
TOP



	Q:
	What if I do not provide the String array as the argument to the method?

	A:
	Program compiles but throws a runtime error "NoSuchMethodError". 

	 
	 
	
TOP



	Q:
	What is the first argument of the String array in main method?

	A:
	The String array is empty. It does not have any element. This is unlike C/C++ where the first element by default is the program name.

	 
	 
	
TOP



	Q:
	If I do not provide any arguments on the command line, then the String array of Main method will be empty of null?

	A:
	It is empty. But not null.

	 
	 
	
TOP



	Q:
	How can one prove that the array is not null but empty?

	A:
	Print args.length. It will print 0. That means it is empty. But if it would have been null then it would have thrown a NullPointerException on attempting to print args.length.

	 
	 
	
TOP



	Q:
	What environment variables do I need to set on my machine in order to be able to run Java programs?

	A:
	CLASSPATH and PATH are the two variables.

	 
	 
	
TOP



	Q:
	Can an application have multiple classes having main method?

	A:
	Yes it is possible. While starting the application we mention the class name to be run. The JVM will look for the Main method only in the class whose name you have mentioned. Hence there is not conflict amongst the multiple classes having main method.

	 
	 
	
TOP



	Q:
	Can I have multiple main methods in the same class?

	A:
	No the program fails to compile. The compiler says that the main method is already defined in the class.

	 
	 
	
TOP



	Q:
	Do I need to import java.lang package any time? Why ?

	A:
	No. It is by default loaded internally by the JVM.

	 
	 
	
TOP



	Q:
	Can I import same package/class twice? Will the JVM load the package twice at runtime?

	A:
	One can import the same package or same class multiple times. Neither compiler nor JVM complains abt it. And the JVM will internally load the class only once no matter how many times you import the same class.

	 
	 
	
TOP



	Q:
	What are Checked and UnChecked Exception?

	A:
	A checked exception is some subclass of Exception (or Exception itself), excluding class RuntimeException and its subclasses.
Making an exception checked forces client programmers to deal with the possibility that the exception will be thrown. eg, IOException thrown by java.io.FileInputStream's read() method·
Unchecked exceptions are RuntimeException and any of its subclasses. Class Error and its subclasses also are unchecked. With an unchecked exception, however, the compiler doesn't force client programmers either to catch the
exception or declare it in a throws clause. In fact, client programmers may not even know that the exception could be thrown. eg, StringIndexOutOfBoundsException thrown by String's charAt() method· Checked exceptions must be caught at compile time. Runtime exceptions do not need to be. Errors often cannot be.

	 
	
TOP 



	Q:
	What is Overriding?

	A:
	When a class defines a method using the same name, return type, and arguments as a method in its superclass, the method in the class overrides the method in the superclass.
When the method is invoked for an object of the class, it is the new definition of the method that is called, and not the method definition from superclass. Methods may be overridden to be more public, not more private. 

	 
	
TOP 



	Q:
	What are different types of inner classes?

	A:
	Nested top-level classes, Member classes, Local classes, Anonymous classes
Nested top-level classes- If you declare a class within a class and specify the static modifier, the compiler treats the class just like any other top-level class.
Any class outside the declaring class accesses the nested class with the declaring class name acting similarly to a package. Eg, outer.inner. Top-level inner classes implicitly have access only to static variables. There can also be inner interfaces. All of these are of the nested top-level variety.

Member classes - Member inner classes are just like other member methods and member variables and access to the member class is restricted, just like methods and variables. This means a public member class acts similarly to a nested top-level class. The primary difference between member classes and nested top-level classes is that member classes have access to the specific instance of the enclosing class.

Local classes - Local classes are like local variables, specific to a block of code. Their visibility is only within the block of their declaration. In order for the class to be useful beyond the declaration block, it would need to implement a
more publicly available interface.Because local classes are not members, the modifiers public, protected, private, and static are not usable.

Anonymous classes - Anonymous inner classes extend local inner classes one level further. As anonymous classes have no name, you cannot provide a constructor.


	Q:
	Are the imports checked for validity at compile time? e.g. will the code containing an import such as java.lang.ABCD compile?

	A:
	Yes the imports are checked for the semantic validity at compile time. The code containing above line of import will not compile. It will throw an error saying,can not resolve symbol
symbol : class ABCD
location: package io
import java.io.ABCD; 

	 
	 
	
TOP



	Q:
	Does importing a package imports the subpackages as well? e.g. Does importing com.MyTest.* also import com.MyTest.UnitTests.*?

	A:
	No you will have to import the subpackages explicitly. Importing com.MyTest.* will import classes in the package MyTest only. It will not import any class in any of it's subpackage.

	 
	 
	
TOP



	Q:
	What is the difference between declaring a variable and defining a variable?

	A:
	In declaration we just mention the type of the variable and it's name. We do not initialize it. But defining means declaration + initialization.
e.g String s; is just a declaration while String s = new String ("abcd"); Or String s = "abcd"; are both definitions.

	 
	 
	
TOP



	Q:
	What is the default value of an object reference declared as an instance variable?

	A:
	null unless we define it explicitly.

	 
	 
	
TOP



	Q:
	Can a top level class be private or protected?

	A:
	No. A top level class can not be private or protected. It can have either "public" or no modifier. If it does not have a modifier it is supposed to have a default access.If a top level class is declared as private the compiler will complain that the "modifier private is not allowed here". This means that a top level class can not be private. Same is the case with protected.

	 
	 
	
TOP



	Q:
	What type of parameter passing does Java support?

	A:
	In Java the arguments are always passed by value .

	 
	[ Update from Eki and Jyothish Venu] 
	
TOP



	Q:
	Primitive data types are passed by reference or pass by value?

	A:
	Primitive data types are passed by value.

	 
	 
	
TOP



	Q:
	Objects are passed by value or by reference?

	A:
	Java only supports pass by value. With objects, the object reference itself is passed by value and so both the original reference and parameter copy both refer to the same object .

	 
	[ Update from Eki and Jyothish Venu] 
	
TOP



	Q:
	What is serialization?

	A:
	Serialization is a mechanism by which you can save the state of an object by converting it to a byte stream.

	 
	 
	
TOP



	Q:
	How do I serialize an object to a file?

	A:
	The class whose instances are to be serialized should implement an interface Serializable. Then you pass the instance to the ObjectOutputStream which is connected to a fileoutputstream. This will save the object to a file.

	 
	 
	
TOP



	Q:
	Which methods of Serializable interface should I implement?

	A:
	The serializable interface is an empty interface, it does not contain any methods. So we do not implement any methods.

	 
	 
	
TOP



	Q:
	How can I customize the seralization process? i.e. how can one have a control over the serialization process?

	A:
	Yes it is possible to have control over serialization process. The class should implement Externalizable interface. This interface contains two methods namely readExternal and writeExternal. You should implement these methods and write the logic for customizing the serialization process.

	 
	 
	
TOP



	Q:
	What is the common usage of serialization?

	A:
	Whenever an object is to be sent over the network, objects need to be serialized. Moreover if the state of an object is to be saved, objects need to be serilazed.

	 
	 
	
TOP



	Q:
	What is Externalizable interface?

	A:
	Externalizable is an interface which contains two methods readExternal and writeExternal. These methods give you a control over the serialization mechanism. Thus if your class implements this interface, you can customize the serialization process by implementing these methods.

	 
	 
	
TOP



	Q:
	What happens to the object references included in the object?

	A:
	The serialization mechanism generates an object graph for serialization. Thus it determines whether the included object references are serializable or not. This is a recursive process. Thus when an object is serialized, all the included objects are also serialized alongwith the original obect.

	 
	 
	
TOP



	Q:
	What one should take care of while serializing the object?

	A:
	One should make sure that all the included objects are also serializable. If any of the objects is not serializable then it throws a NotSerializableException.

	 
	 
	
TOP



	Q:
	What happens to the static fields of a class during serialization? Are these fields serialized as a part of each serialized object?

	A:
	Yes the static fields do get serialized. If the static field is an object then it must have implemented Serializable interface. The static fields are serialized as a part of every object. But the commonness of the static fields across all the instances is maintained even after serialization.

	 
	 
	


	Q:
	Does Java provide any construct to find out the size of an object?

	A:
	No there is not sizeof operator in Java. So there is not direct way to determine the size of an object directly in Java.

	 
	 
	
TOP



	Q:
	Does importing a package imports the subpackages as well? e.g. Does importing com.MyTest.* also import com.MyTest.UnitTests.*?

	A:
	Read the system time just before the method is invoked and immediately after method returns. Take the time difference, which will give you the time taken by a method for execution. 

To put it in code...
long start = System.currentTimeMillis ();
method ();
long end = System.currentTimeMillis ();
System.out.println ("Time taken for execution is " + (end - start));
Remember that if the time taken for execution is too small, it might show that it is taking zero milliseconds for execution. Try it on a method which is big enough, in the sense the one which is doing considerable amout of processing.

	 
	 
	
TOP



	Q:
	What are wrapper classes?

	A:
	Java provides specialized classes corresponding to each of the primitive data types. These are called wrapper classes. They are e.g. Integer, Character, Double etc.

	 
	 
	
TOP



	Q:
	Why do we need wrapper classes?

	A:
	It is sometimes easier to deal with primitives as objects. Moreover most of the collection classes store objects and not primitive data types. And also the wrapper classes provide many utility methods also. Because of these reasons we need wrapper classes. And since we create instances of these classes we can store them in any of the collection classes and pass them around as a collection. Also we can pass them around as method parameters where a method expects an object.

	 
	 
	
TOP



	Q:
	What are checked exceptions?

	A:
	Checked exception are those which the Java compiler forces you to catch. e.g. IOException are checked Exceptions.

	 
	 
	
TOP



	Q:
	What are runtime exceptions?

	A:
	Runtime exceptions are those exceptions that are thrown at runtime because of either wrong input data or because of wrong business logic etc. These are not checked by the compiler at compile time.

	 
	 
	
TOP



	Q:
	What is the difference between error and an exception?

	A:
	An error is an irrecoverable condition occurring at runtime. Such as OutOfMemory error. These JVM errors and you can not repair them at runtime. While exceptions are conditions that occur because of bad input etc. e.g. FileNotFoundException will be thrown if the specified file does not exist. Or a NullPointerException will take place if you try using a null reference. In most of the cases it is possible to recover from an exception (probably by giving user a feedback for entering proper values etc.).

	 
	 
	
TOP



	Q:
	How to create custom exceptions?

	A:
	Your class should extend class Exception, or some more specific type thereof.

	 
	 
	
TOP



	Q:
	If I want an object of my class to be thrown as an exception object, what should I do?

	A:
	The class should extend from Exception class. Or you can extend your class from some more precise exception type also.

	 
	 
	
TOP



	Q:
	If my class already extends from some other class what should I do if I want an instance of my class to be thrown as an exception object?

	A:
	One can not do anytihng in this scenarion. Because Java does not allow multiple inheritance and does not provide any exception interface as well.

	 
	 
	
TOP



	Q:
	What happens to an unhandled exception?

	A:
	One can not do anytihng in this scenarion. Because Java does not allow multiple inheritance and does not provide any exception interface as well.

	 
	 
	
TOP



	Q:
	How does an exception permeate through the code?

	A:
	An unhandled exception moves up the method stack in search of a matching When an exception is thrown from a code which is wrapped in a try block followed by one or more catch blocks, a search is made for matching catch block. If a matching type is found then that block will be invoked. If a matching type is not found then the exception moves up the method stack and reaches the caller method. Same procedure is repeated if the caller method is included in a try catch block. This process continues until a catch block handling the appropriate type of exception is found. If it does not find such a block then finally the program terminates.

	 
	 
	
TOP



	Q:
	What are the different ways to handle exceptions?

	A:
	There are two ways to handle exceptions, 
1. By wrapping the desired code in a try block followed by a catch block to catch the exceptions. and 
2. List the desired exceptions in the throws clause of the method and let the caller of the method hadle those exceptions.

	 
	 
	
TOP



	Q:
	Q: What is the basic difference between the 2 approaches to exception handling...1> try catch block and 2> specifying the candidate exceptions in the throws clause?
When should you use which approach?

	A:
	In the first approach as a programmer of the method, you urself are dealing with the exception. This is fine if you are in a best position to decide should be done in case of an exception. Whereas if it is not the responsibility of the method to deal with it's own exceptions, then do not use this approach. In this case use the second approach. In the second approach we are forcing the caller of the method to catch the exceptions, that the method is likely to throw. This is often the approach library creators use. They list the exception in the throws clause and we must catch them. You will find the same approach throughout the java libraries we use.

	 
	 
	
TOP



	Q:
	Is it necessary that each try block must be followed by a catch block?

	A:
	It is not necessary that each try block must be followed by a catch block. It should be followed by either a catch block OR a finally block. And whatever exceptions are likely to be thrown should be declared in the throws clause of the method.

	 
	 
	
TOP



	Q:
	If I write return at the end of the try block, will the finally block still execute?

	A:
	Yes even if you write return as the last statement in the try block and no exception occurs, the finally block will execute. The finally block will execute and then the control return.

	 
	 
	
TOP



	Q:
	If I write System.exit (0); at the end of the try block, will the finally block still execute?

	A:
	No in this case the finally block will not execute because when you say System.exit (0); the control immediately goes out of the program, and thus finally never executes.

	 
	 
	


	Q:
	How are Observer and Observable used?

	A:
	Objects that subclass the Observable class maintain a list of observers. When an Observable object is updated it invokes the update() method of each of its observers to notify the observers that it has changed state. The Observer interface is implemented by objects that observe Observable objects.

	 
	[Received from Venkateswara Manam] 
	
TOP



	Q:
	What is synchronization and why is it important?

	A:
	With respect to multithreading, synchronization is the capability to control
the access of multiple threads to shared resources. Without synchronization, it is possible for one thread to modify a shared object while another thread is in the process of using or updating that object's value. This often leads to
significant errors.

	 
	Venkateswara Manam[ Received from ] 
	
TOP



	Q:
	How does Java handle integer overflows and underflows?

	A:
	It uses those low order bytes of the result that can fit into the size of the type allowed by the operation.

	 
	
	
TOP



	Q:
	Does garbage collection guarantee that a program will not run out of memory?

	A:
	Garbage collection does not guarantee that a program will not run out of
memory. It is possible for programs to use up memory resources faster than they are garbage collected. It is also possible for programs to create objects that are not subject to garbage collection
.

	
	
	
TOP



	Q:
	What is the difference between preemptive scheduling and time slicing?

	A:
	Under preemptive scheduling, the highest priority task executes until it enters
the waiting or dead states or a higher priority task comes into existence. Under time slicing, a task executes for a predefined slice of time and then reenters the pool of ready tasks. The scheduler then determines which task should execute next, based on priority and other factors.

	
	
	
TOP



	Q:
	When a thread is created and started, what is its initial state?

	A:
	A thread is in the ready state after it has been created and started.

	 
	Venkateswara Manam[ Received from ]
	
TOP



	Q:
	What is the purpose of finalization?

	A:
	The purpose of finalization is to give an unreachable object the opportunity to perform any cleanup processing before the object is garbage collected.

	 
	Venkateswara Manam[ Received from ]
	
TOP



	Q:
	What is the Locale class?

	A:
	The Locale class is used to tailor program output to the conventions of a
particular geographic, political, or cultural region.

	 
	Venkateswara Manam[ Received from ]
	
TOP



	Q:
	What is the difference between a while statement and a do statement?

	A:
	A while statement checks at the beginning of a loop to see whether the next
loop iteration should occur. A do statement checks at the end of a loop to see whether the next iteration of a loop should occur. The do statement will 
always execute the body of a loop at least once.

	 
	Venkateswara Manam[ Received from ]
	
TOP



	Q:
	What is the difference between static and non-static variables?

	A:
	A static variable is associated with the class as a whole rather than with specific instances of a class. Non-static variables take on unique values with each object instance.

	 
	Venkateswara Manam[ Received from ]
	
TOP



	Q:
	How are this() and super() used with constructors?

	A:
	Othis() is used to invoke a constructor of the same class. super() is used to
invoke a superclass constructor.

	 
	Venkateswara Manam[ Received from ]
	
TOP



	Q:
	What are synchronized methods and synchronized statements?

	A:
	Synchronized methods are methods that are used to control access to an object. A thread only executes a synchronized method after it has acquired the lock for the method's object or class. Synchronized statements are similar to synchronized methods. A synchronized statement can only be executed after a thread has acquired the lock for the object or class referenced in the synchronized statement.

	 
	Venkateswara Manam[ Received from ]
	


J2EE

JSP

	Q:
	What is a output comment? 

	A:
	A comment that is sent to the client in the viewable page source.The JSP engine handles an output comment as uninterpreted HTML text, returning the comment in the HTML output sent to the client. You can see the comment by viewing the page source from your Web browser.  JSP Syntax <!-- comment [ <%= expression %> ] -->  Example 1 <!-- This is a commnet sent to client on <%= (new java.util.Date()).toLocaleString() %> -->  Displays in the page source: <!-- This is a commnet sent to client on January 24, 2004 -->


	Q:
	What is a Hidden Comment?

	A:
	A comments that documents the JSP page but is not sent to the client. The JSP engine ignores a hidden comment, and does not process any code within hidden comment tags. A hidden comment is not sent to the client, either in the displayed JSP page or the HTML page source. The hidden comment is useful when you want to hide or "comment out" part of your JSP page.  You can use any characters in the body of the comment except the closing --%> combination. If you need to use --%> in your comment, you can escape it by typing --%\>.  JSP Syntax <%-- comment --%> Examples <%@ page language="java" %> <html> <head><title>A Hidden Comment </title></head> <body> <%-- This comment will not be visible to the colent in the page source --%> </body> </html>


	Q:
	What is a Expression?

	A:
	An expression tag contains a scripting language expression that is evaluated, converted to a String, and inserted where the expression appears in the JSP file. Because the value of an expression is converted to a String, you can use an expression within text in a JSP file. Like <%= someexpression %>  <%= (new java.util.Date()).toLocaleString() %> You cannot use a semicolon to end an expression 


	Q:
	What is a Declaration? 

	A:
	A declaration declares one or more variables or methods for use later in the JSP source file.  A declaration must contain at least one complete declarative statement. You can declare any number of variables or methods within one declaration tag, as long as they are separated by semicolons. The declaration must be valid in the scripting language used in the JSP file.   <%! somedeclarations %> <%! int i = 0; %> <%! int a, b, c; %>


	Q:
	What is a Scriptlet? 

	A:
	A scriptlet can contain any number of language statements, variable or method declarations, or expressions that are valid in the page scripting language.Within scriptlet tags, you can  1.Declare variables or methods to use later in the file (see also Declaration).  2.Write expressions valid in the page scripting language (see also Expression).   3.Use any of the JSP implicit objects or any object declared with a <jsp:useBean> tag.  You must write plain text, HTML-encoded text, or other JSP tags outside the scriptlet.  Scriptlets are executed at request time, when the JSP engine processes the client request. If the scriptlet produces output, the output is stored in the out object, from which you can display it.


	Q:
	What are implicit objects? List them?

	A:
	Certain objects that are available for the use in JSP documents without being declared first. These objects are parsed by the JSP engine and inserted into the generated servlet. The implicit objects re listed below request  response  pageContext  session  application  out  config  page  exception   


	Q:
	Difference between forward and sendRedirect?

	A:
	When you invoke a forward request, the request is sent to another resource on the server, without the client being informed that a different resource is going to process the request. This process occurs completly with in the web container. When a sendRedirtect method is invoked, it causes the web container to return to the browser indicating that a new URL should be requested. Because the browser issues a completly new request any object that are stored as request attributes before the redirect occurs will be lost. This extra round trip a redirect is slower than forward. 


	Q:
	What are the different scope valiues for the <jsp:useBean>?

	A:
	The different scope values for <jsp:useBean> are  1. page 2. request 3.session 4.application


	Q:
	Explain the life-cycle mehtods in JSP?

	A:
	THe generated servlet class for a JSP page implements the HttpJspPage interface of the javax.servlet.jsp package. Hte HttpJspPage interface extends the JspPage interface which inturn extends the Servlet interface of the javax.servlet package. the generated servlet class thus implements all the methods of the these three interfaces. The JspPage interface declares only two mehtods - jspInit() and jspDestroy() that must be implemented by all JSP pages regardless of the client-server protocol. However the JSP specification has provided the HttpJspPage interfaec specifically for the JSp pages serving HTTP requests. This interface declares one method _jspService().  The jspInit()- The container calls the jspInit() to initialize te servlet instance.It is called before any other method, and is called only once for a servlet instance. The _jspservice()- The container calls the _jspservice() for each request, passing it the request and the response objects. The jspDestroy()- The container calls this when it decides take the instance out of service. It is the last method called n the servlet instance.

	Q:
	How do I prevent the output of my JSP or Servlet pages from being cached by the browser?

	A:
	You will need to set the appropriate HTTP header attributes to prevent the dynamic content output by the JSP page from being cached by the browser. Just execute the following scriptlet at the beginning of your JSP pages to prevent them from being cached at the browser. You need both the statements to take care of some of the older browser versions.  <% response.setHeader("Cache-Control","no-store"); //HTTP 1.1 response.setHeader("Pragma\","no-cache"); //HTTP 1.0 response.setDateHeader ("Expires", 0); //prevents caching at the proxy server %>


	Q:
	How does JSP handle run-time exceptions? 

	A:
	You can use the errorPage attribute of the page directive to have uncaught run-time exceptions automatically forwarded to an error processing page. For example: <%@ page errorPage=\"error.jsp\" %> redirects the browser to the JSP page error.jsp if an uncaught exception is encountered during request processing. Within error.jsp, if you indicate that it is an error-processing page, via the directive: <%@ page isErrorPage=\"true\" %> Throwable object describing the exception may be accessed within the error page via the exception implicit object. Note: You must always use a relative URL as the value for the errorPage attribute. 


	Q:
	How can I implement a thread-safe JSP page? What are the advantages and Disadvantages of using it?

	A:
	You can make your JSPs thread-safe by having them implement the SingleThreadModel interface. This is done by adding the directive <%@ page isThreadSafe="false" %> within your JSP page. With this, instead of a single instance of the servlet generated for your JSP page loaded in memory, you will have N instances of the servlet loaded and initialized, with the service method of each instance effectively synchronized. You can typically control the number of instances (N) that are instantiated for all servlets implementing SingleThreadModel through the admin screen for your JSP engine. More importantly, avoid using the tag for variables. If you do use this tag, then you should set isThreadSafe to true, as mentioned above. Otherwise, all requests to that page will access those variables, causing a nasty race condition. SingleThreadModel is not recommended for normal use. There are many pitfalls, including the example above of not being able to use <%! %>. You should try really hard to make them thread-safe the old fashioned way: by making them thread-safe .


	Q:
	How do I use a scriptlet to initialize a newly instantiated bean? 

	A:
	A jsp:useBean action may optionally have a body. If the body is specified, its contents will be automatically invoked when the specified bean is instantiated. Typically, the body will contain scriptlets or jsp:setProperty tags to initialize the newly instantiated bean, although you are not restricted to using those alone. The following example shows the “today” property of the Foo bean initialized to the current date when it is instantiated. Note that here, we make use of a JSP expression within the jsp:setProperty action.  <jsp:useBean id="foo" class="com.Bar.Foo" >  <jsp:setProperty name="foo" property="today"  value="<%=java.text.DateFormat.getDateInstance().format(new java.util.Date()) %>" / > <%-- scriptlets calling bean setter methods go here --%> </jsp:useBean > 


	Q:
	How can I prevent the word "null" from appearing in my HTML input text fields when I populate them with a resultset that has null values? 

	A:
	You could make a simple wrapper function, like  <%! String blanknull(String s) { return (s == null) ? \"\" : s; } %> then use it inside your JSP form, like <input type="text" name="lastName" value="<%=blanknull(lastName)% >" >


	Q:
	What's a better approach for enabling thread-safe servlets and JSPs? SingleThreadModel Interface or Synchronization?

	A:
	Although the SingleThreadModel technique is easy to use, and works well for low volume sites, it does not scale well. If you anticipate your users to increase in the future, you may be better off implementing explicit synchronization for your shared data. The key however, is to effectively minimize the amount of code that is synchronzied so that you take maximum advantage of multithreading.  Also, note that SingleThreadModel is pretty resource intensive from the server\'s perspective. The most serious issue however is when the number of concurrent requests exhaust the servlet instance pool. In that case, all the unserviced requests are queued until something becomes free - which results in poor performance. Since the usage is non-deterministic, it may not help much even if you did add more memory and increased the size of the instance pool. 


	Q:
	How can I enable session tracking for JSP pages if the browser has disabled cookies?

	A:
	We know that session tracking uses cookies by default to associate a session identifier with a unique user. If the browser does not support cookies, or if cookies are disabled, you can still enable session tracking using URL rewriting. URL rewriting essentially includes the session ID within the link itself as a name/value pair. However, for this to be effective, you need to append the session ID for each and every link that is part of your servlet response. Adding the session ID to a link is greatly simplified by means of of a couple of methods: response.encodeURL() associates a session ID with a given URL, and if you are using redirection, response.encodeRedirectURL() can be used by giving the redirected URL as input. Both encodeURL() and encodeRedirectedURL() first determine whether cookies are supported by the browser; if so, the input URL is returned unchanged since the session ID will be persisted as a cookie.  Consider the following example, in which two JSP files, say hello1.jsp and hello2.jsp, interact with each other. Basically, we create a new session within hello1.jsp and place an object within this session. The user can then traverse to hello2.jsp by clicking on the link present within the page. Within hello2.jsp, we simply extract the object that was earlier placed in the session and display its contents. Notice that we invoke the encodeURL() within hello1.jsp on the link used to invoke hello2.jsp; if cookies are disabled, the session ID is automatically appended to the URL, allowing hello2.jsp to still retrieve the session object. Try this example first with cookies enabled. Then disable cookie support, restart the brower, and try again. Each time you should see the maintenance of the session across pages. Do note that to get this example to work with cookies disabled at the browser, your JSP engine has to support URL rewriting.  hello1.jsp <%@ page session=\"true\" %> <% Integer num = new Integer(100); session.putValue("num",num); String url =response.encodeURL("hello2.jsp"); %> <a href=\'<%=url%>\'>hello2.jsp</a> hello2.jsp <%@ page session="true" %> <% Integer i= (Integer )session.getValue("num"); out.println("Num value in session is " + i.intValue()); %> 

	Q:
	Explain the life cycle methods of a Servlet.

	A:
	The javax.servlet.Servlet interface defines the three methods known as life-cycle method. public void init(ServletConfig config) throws ServletException public void service( ServletRequest req, ServletResponse res) throws ServletException, IOException public void destroy() First the servlet is constructed, then initialized wih the init() method. Any request from client are handled initially by the service() method before delegating to the doXxx() methods in the case of HttpServlet.  The servlet is removed from service, destroyed with the destroy() methid, then garbaged collected and finalized.

	Q:
	What is the difference between the getRequestDispatcher(String path) method of javax.servlet.ServletRequest interface and javax.servlet.ServletContext interface?

	A:
	The getRequestDispatcher(String path) method of javax.servlet.ServletRequest interface accepts parameter the path to the resource to be included or forwarded to, which can be relative to the request of the calling servlet. If the path begins with a "/" it is interpreted as relative to the current context root.  The getRequestDispatcher(String path) method of javax.servlet.ServletContext interface cannot accepts relative paths. All path must sart with a "/" and are interpreted as relative to curent context root.

	Q:
	Explain the directory structure of a web application.

	A:
	The directory structure of a web application consists of two parts.  A private directory called WEB-INF A public resource directory which contains public resource folder.  WEB-INF folder consists of  1. web.xml 2. classes directory 3. lib directory

	Q:
	What are the common mechanisms used for session tracking?

	A:
	Cookies SSL sessions URL- rewriting

	Q:
	Explain ServletContext.

	A:
	ServletContext interface is a window for a servlet to view it's environment. A servlet can use this interface to get information such as initialization parameters for the web applicationor servlet container's version. Every web application has one and only one ServletContext and is accessible to all active resource of that application.

	Q:
	What is preinitialization of a servlet?

	A:
	A container doesnot initialize the servlets ass soon as it starts up, it initializes a servlet when it receives a request for that servlet first time. This is called lazy loading. The servlet specification defines the <load-on-startup> element, which can be specified in the deployment descriptor to make the servlet container load and initialize the servlet as soon as it starts up. The process of loading a servlet before any request comes in is called preloading or preinitializing a servlet.

	Q:
	What is the difference between Difference between doGet() and doPost()?

	A:
	A doGet() method is limited with 2k of data to be sent, and doPost() method doesn't have this limitation. A request string for doGet() looks like the following:  http://www.allapplabs.com/svt1?p1=v1&p2=v2&...&pN=vN doPost() method call doesn't need a long text tail after a servlet name in a request. All parameters are stored in a request itself, not in a request string, and it's impossible to guess the data transmitted to a servlet only looking at a request string.

	Q:
	What is the difference between HttpServlet and GenericServlet?

	A:
	A GenericServlet has a service() method aimed to handle requests. HttpServlet extends GenericServlet and adds support for doGet(), doPost(), doHead() methods (HTTP 1.0) plus doPut(), doOptions(), doDelete(), doTrace() methods (HTTP 1.1).  Both these classes are abstract.


EJB

	Q:
	What are the different kinds of enterprise beans?

	A:
	Stateless session bean- An instance of these non-persistent EJBs provides a service without storing an interaction or conversation state between methods. Any instance can be used for any client.  Stateful session bean- An instance of these non-persistent EJBs maintains state across methods and transactions. Each instance is associated with a particular client.  Entity bean- An instance of these persistent EJBs represents an object view of the data, usually rows in a database. They have a primary key as a unique identifier. Entity bean persistence can be either container-managed or bean-managed.   Message-driven bean- An instance of these EJBs is integrated with the Java Message Service (JMS) to provide the ability for message-driven beans to act as a standard JMS message consumer and perform asynchronous processing between the server and the JMS message producer. 

	Q:
	What is Session Bean?

	A:
	A session bean is a non-persistent object that implements some business logic running on the server. One way to think of a session object is as a logical extension of the client program that runs on the server.  Session beans are used to manage the interactions of entity and other session beans,access resources, and generally perform tasks on behalf of the client.  There are two basic kinds of session bean: stateless and stateful.   Stateless session beans are made up of business methods that behave like procedures; they operate only on the arguments passed to them when they are invoked. Stateless beans are called stateless because they are transient; they do not maintain business state between method invocations.Each invocation of a stateless business method is independent from previous invocations. Because stateless session beans are stateless, they are easier for the EJB container to manage, so they tend to process requests faster and use less resources.  Stateful session beans encapsulate business logic and state specific to a client. Stateful beans are called "stateful" because they do maintain business state between method invocations, held in memory and not persistent. Unlike stateless session beans, clients do not share stateful beans. When a client creates a stateful bean, that bean instance is dedicated to service only that client. This makes it possible to maintain conversational state, which is business state that can be shared by methods in the same stateful bean.

	Q:
	What is Entity Bean?

	A:
	The entity bean is used to represent data in the database. It provides an object-oriented interface to data that would normally be accessed by the JDBC or some other back-end API. More than that, entity beans provide a component model that allows bean developers to focus their attention on the business logic of the bean, while the container takes care of managing persistence,transactions, and access control.  There are two basic kinds of entity beans: container-managed ersistence (CMP) andbean-managed persistence (BMP).   Container-managed persistence beans are the simplest for the bean developer to create and the most difficult for the EJB server to support. This is because all the logic for synchronizing the bean's state with the database is handled automatically by the container. This means that the bean developer doesn't need to write any data access logic, while the EJB server is supposed to take care of all the persistence needs automatically. With CMP, the container manages the persistence of the entity bean. Vendor tools are used to map the entity fields to the database and absolutely no database access code is written in the bean class.   The bean-managed persistence (BMP) enterprise bean manages synchronizing its state with the database as directed by the container. The bean uses a database API to read and write its fields to the database, but the container tells it when to do each synchronization operation and manages the transactions for the bean automatically. Bean-managed persistence gives the bean developer the flexibility to perform persistence operations that are too complicated for the container or to use a data source that is not supported by the container.


	Q:
	What are the methods of Entity Bean?

	A:
	An entity bean consists of 4 groups of methods:   1. create methods: To create a new instance of a CMP entity bean, and therefore insert data into the database, the create() method on the bean's home interface must be invoked. They look like this: EntityBeanClass ejbCreateXXX(parameters), where EntityBeanClass is an Entity Bean you are trying to instantiate, ejbCreateXXX(parameters) methods are used for creating Entity Bean instances according to the parameters specified and to some programmer-defined conditions.   A bean's home interface may declare zero or more create() methods, each of which must have corresponding ejbCreate() and ejbPostCreate() methods in the bean class. These creation methods are linked at run time, so that when a create() method is invoked on the home interface, the container delegates the invocation to the corresponding ejbCreate() and ejbPostCreate() methods on the bean class.   2. finder methods: The methods in the home interface that begin with "find" are called the find methods. These are used to query the EJB server for specific entity beans, based on the name of the method and arguments passed. Unfortunately, there is no standard query language defined for find methods, so each vendor will implement the find method differently. In CMP entity beans, the find methods are not implemented with matching methods in the bean class; containers implement them when the bean is deployed in a vendor specific manner. The deployer will use vendor specific tools to tell the container how a particular find method should behave. Some vendors will use object-relational mapping tools to define the behavior of a find method while others will simply require the deployer to enter the appropriate SQL command.  There are two basic kinds of find methods: single-entity and multi-entity. Single-entity find methods return a remote reference to the one specific entity bean that matches the find request. If no entity beans are found, the method throws an ObjectNotFoundException . Every entity bean must define the single-entity find method with the method name findByPrimaryKey(), which takes the bean's primary key type as an argument.  The multi-entity find methods return a collection ( Enumeration or Collection type) of entities that match the find request. If no entities are found, the multi-entity find returns an empty collection.   3. remove methods: These methods (you may have up to 2 remove methods, or don't have them at all) allow the client to physically remove Entity beans by specifying either Handle or a Primary Key for the Entity Bean.   4. home methods: These methods are designed and implemented by a developer, and EJB specification doesn't have any requirements for them except the need to throw a RemoteException is each home method

	Q:
	What are the methods of Entity Bean?What is the difference between Container-Managed Persistent (CMP) bean and Bean-Managed Persistent(BMP) ?

	A:
	Container-managed persistence beans are the simplest for the bean developer to create and the most difficult for the EJB server to support. This is because all the logic for synchronizing the bean's state with the database is handled automatically by the container. This means that the bean developer doesn't need to write any data access logic, while the EJB server is supposed to take care of all the persistence needs automatically. With CMP, the container manages the persistence of the entity bean. A CMP bean developer doesn't need to worry about JDBC code and transactions, because the Container performs database calls and transaction management instead of the programmer. Vendor tools are used to map the entity fields to the database and absolutely no database access code is written in the bean class. All table mapping is specified in the deployment descriptor. Otherwise, a BMP bean developer takes the load of linking an application and a database on his shoulders.   The bean-managed persistence (BMP) enterprise bean manages synchronizing its state with the database as directed by the container. The bean uses a database API to read and write its fields to the database, but the container tells it when to do each synchronization operation and manages the transactions for the bean automatically. Bean-managed persistence gives the bean developer the flexibility to perform persistence operations that are too complicated for the container or to use a data source that is not supported by the container.BMP beans are not 100% database-independent, because they may contain database-specific code, but CMP beans are unable to perform complicated DML (data manipulation language) statements. EJB 2.0 specification introduced some new ways of querying database (by using the EJB QL - query language).


	Q:
	What are the callback methods in Entity beans?

	A:
	The bean class defines create methods that match methods in the home interface and business methods that match methods in the remote interface. The bean class also implements a set of callback methods that allow the container to notify the bean of events in its life cycle. The callback methods are defined in the javax.ejb.EntityBean interface that is implemented by all entity beans.The EntityBean interface has the following definition. Notice that the bean class implements these methods. public interface javax.ejb.EntityBean {    public void setEntityContext(); public void unsetEntityContext(); public void ejbLoad(); public void ejbStore(); public void ejbActivate(); public void ejbPassivate(); public void ejbRemove();  }    The setEntityContext() method provides the bean with an interface to the container called the EntityContext. The EntityContext interface contains methods for obtaining information about the context under which the bean is operating at any particular moment. The EntityContext interface is used to access security information about the caller; to determine the status of the current transaction or to force a transaction rollback; or to get a reference to the bean itself, its home, or its primary key. The EntityContext is set only once in the life of an entity bean instance, so its reference should be put into one of the bean instance's fields if it will be needed later.  The unsetEntityContext() method is used at the end of the bean's life cycle before the instance is evicted from memory to dereference the EntityContext and perform any last-minute clean-up.   The ejbLoad() and ejbStore() methods in CMP entities are invoked when the entity bean's state is being synchronized with the database. The ejbLoad() is invoked just after the container has refreshed the bean container-managed fields with its state from the database. The ejbStore() method is invoked just before the container is about to write the bean container-managed fields to the database. These methods are used to modify data as it's being synchronized. This is common when the data stored in the database is different than the data used in the bean fields.   The ejbPassivate() and ejbActivate() methods are invoked on the bean by the container just before the bean is passivated and just after the bean is activated, respectively. Passivation in entity beans means that the bean instance is disassociated with its remote reference so that the container can evict it from memory or reuse it. It's a resource conservation measure the container employs to reduce the number of instances in memory. A bean might be passivated if it hasn't been used for a while or as a normal operation performed by the container to maximize reuse of resources. Some containers will evict beans from memory, while others will reuse instances for other more active remote references. The ejbPassivate() and ejbActivate() methods provide the bean with a notification as to when it's about to be passivated (disassociated with the remote reference) or activated (associated with a remote reference).

	Q:
	What is software architecture of EJB?

	A:
	Session and Entity EJBs consist of 4 and 5 parts respetively:  1. A remote interface (a client interacts with it),   2. A home interface (used for creating objects and for declaring business methods),  3. A bean object (an object, which actually performs business logic and EJB-specific operations).   4. A deployment descriptor (an XML file containing all information required for maintaining the EJB) or a set of deployment descriptors (if you are using some container-specific features).   5.A Primary Key class - is only Entity bean specific.

	Q:
	Can Entity Beans have no create() methods?

	A:
	Yes. In some cases the data is inserted NOT using Java application, so you may only need to retrieve the information, perform its processing, but not create your own information of this kind.

	Q:
	What is bean managed transaction?

	A:
	If a developer doesn't want a Container to manage transactions, it's possible to implement all database operations manually by writing the appropriate JDBC code. This often leads to productivity increase, but it makes an Entity Bean incompatible with some databases and it enlarges the amount of code to be written. All transaction management is explicitly performed by a developer.


	Q:
	What are transaction attributes? 

	A:
	The transaction attribute specifies how the Container must manage transactions for a method when a client invokes the method via the enterprise bean’s home or component interface or when the method is invoked as the result of the arrival of a JMS message. (Sun's EJB Specification) Below is a list of transactional attributes:  1. NotSupported - transaction context is unspecified.  2. Required - bean's method invocation is made within a transactional context. If a client is not associated with a transaction, a new transaction is invoked automatically.   3. Supports - if a transactional context exists, a Container acts like the transaction attribute is Required, else - like NotSupported.  4. RequiresNew - a method is invoked in a new transaction context.  5. Mandatory - if a transactional context exists, a Container acts like the transaction attribute is Required, else it throws a javax.ejb.TransactionRequiredException.  6. Never - a method executes only if no transaction context is specified.

	Q:
	What are transaction isolation levels in EJB?

	A:
	1. Transaction_read_uncommitted- Allows a method to read uncommitted data from a DB(fast but not wise).  2. Transaction_read_committed- Guarantees that the data you are getting has been committed.  3. Transaction_repeatable_read - Guarantees that all reads of the database will be the same during the transaction (good for read and update operations).  4. Transaction_serializable- All the transactions for resource are performed serial. 

	Q:
	How EJB Invocation happens?

	A:
	Step 1: Retrieve Home Object reference from Naming Service via JNDI. step 2: Return Home Object reference to the client. step 3: Create me a new EJB Object through Home Object interface. step 4: Create EJB Object from the Ejb Object step 5: Return EJB Object reference to the client. step 6: Invoke business method using EJB Object reference. step 7: Delegate request to Bean (Enterprise Bean). 


	Q:
	Is it possible to share an HttpSession between a JSP and EJB? What happens when I change a value in the HttpSession from inside an EJB?

	A:
	  You can pass the HttpSession as parameter to an EJB method, only if all objects in session are serializable.This has to be consider as ?passed-by-value", that means that it?s read-only in the EJB. If anything is altered from inside the EJB, it won?t be reflected back to the HttpSession of the Servlet Container.The ?pass-by-reference? can be used between EJBs Remote Interfaces, as they are remote references. While it IS possible to pass an HttpSession as a parameter to an EJB object, it is considered to be ?bad practice ? in terms of object oriented design. This is because you are creating an unnecessary coupling between back-end objects (ejbs) and front-end objects (HttpSession). Create a higher-level of abstraction for your ejb?s api. Rather than passing the whole, fat, HttpSession (which carries with it a bunch of http semantics), create a class that acts as a value object (or structure) that holds all the data you need to pass back and forth between front-end/back-end. Consider the case where your ejb needs to support a non-http-based client. This higher level of abstraction will be flexible enough to support it. 


	Q:
	The EJB container implements the EJBHome and EJBObject classes. For every request from a unique client, does the container create a separate instance of the generated EJBHome and EJBObject classes?

	A:
	The EJB container maintains an instance pool. The container uses these instances for the EJB Home reference irrespective of the client request. while refering the EJB Object classes the container creates a separate instance for each client request. The instance pool maintainence is up to the implementation of the container. If the container provides one, it is available otherwise it is not mandatory for the provider to implement it. Having said that, yes most of the container providers implement the pooling functionality to increase the performance of the application server. The way it is implemented is again up to the implementer. 


	Q:
	Can the primary key in the entity bean be a Java primitive type such as int? 

	A:
	The primary key can't be a primitive type--use the primitive wrapper classes, instead. For example, you can use java.lang.Integer as the primary key class, but not int (it has to be a class, not a primitive) 


	Q:
	Can you control when passivation occurs? 

	A:
	The developer, according to the specification, cannot directly control when passivation occurs. Although for Stateful Session Beans, the container cannot passivate an instance that is inside a transaction. So using transactions can be a a strategy to control passivation. The ejbPassivate() method is called during passivation, so the developer has control over what to do during this exercise and can implement the require optimized logic. Some EJB containers, such as BEA WebLogic, provide the ability to tune the container to minimize passivation calls.  Taken from the WebLogic 6.0 DTD -"The passivation-strategy can be either "default" or "transaction". With the default setting the container will attempt to keep a working set of beans in the cache. With the "transaction" setting, the container will passivate the bean after every transaction (or method call for a non-transactional invocation).


	Q:
	What is the advantage of using Entity bean for database operations, over directly using JDBC API to do database operations? When would I use one over the other? 

	A:
	Entity Beans actually represents the data in a database. It is not that Entity Beans replaces JDBC API. There are two types of Entity Beans Container Managed and Bean Mananged. In Container Managed Entity Bean - Whenever the instance of the bean is created the container automatically retrieves the data from the DB/Persistance storage and assigns to the object variables in bean for user to manipulate or use them. For this the developer needs to map the fields in the database to the variables in deployment descriptor files (which varies for each vendor). In the Bean Managed Entity Bean - The developer has to specifically make connection, retrive values, assign them to the objects in the ejbLoad() which will be called by the container when it instatiates a bean object. Similarly in the ejbStore() the container saves the object values back the the persistance storage. ejbLoad and ejbStore are callback methods and can be only invoked by the container. Apart from this, when you use Entity beans you dont need to worry about database transaction handling, database connection pooling etc. which are taken care by the ejb container. But in case of JDBC you have to explicitly do the above features. what suresh told is exactly perfect. ofcourse, this comes under the database transations, but i want to add this. the great thing about the entity beans of container managed, whenever the connection is failed during the transaction processing, the database consistancy is mantained automatically. the container writes the data stored at persistant storage of the entity beans to the database again to provide the database consistancy. where as in jdbc api, we, developers has to do manually.


	Q:
	What is EJB QL? 

	A:
	EJB QL is a Query Language provided for navigation across a network of enterprise beans and dependent objects defined by means of container managed persistence. EJB QL is introduced in the EJB 2.0 specification. The EJB QL query language defines finder methods for entity beans with container managed persistenceand is portable across containers and persistence managers. EJB QL is used for queries of two types of finder methods: Finder methods that are defined in the home interface of an entity bean and which return entity objects. Select methods, which are not exposed to the client, but which are used by the Bean Provider to select persistent values that are maintained by the Persistence Manager or to select entity objects that are related to the entity bean on which the query is defined. 


	Q:
	Brief description about local interfaces? 

	A:
	EEJB was originally designed around remote invocation using the Java Remote Method Invocation (RMI) mechanism, and later extended to support to standard CORBA transport for these calls using RMI/IIOP. This design allowed for maximum flexibility in developing applications without consideration for the deployment scenario, and was a strong feature in support of a goal of component reuse in J2EE.  Many developers are using EJBs locally -- that is, some or all of their EJB calls are between beans in a single container.  With this feedback in mind, the EJB 2.0 expert group has created a local interface mechanism. The local interface may be defined for a bean during development, to allow streamlined calls to the bean if a caller is in the same container. This does not involve the overhead involved with RMI like marshalling etc. This facility will thus improve the performance of applications in which co-location is planned.  Local interfaces also provide the foundation for container-managed relationships among entity beans with container-managed persistence. 


	Q:
	What are the special design care that must be taken when you work with local interfaces? 

	A:
	EIt is important to understand that the calling semantics of local interfaces are different from those of remote interfaces. For example, remote interfaces pass parameters using call-by-value semantics, while local interfaces use call-by-reference.  This means that in order to use local interfaces safely, application developers need to carefully consider potential deployment scenarios up front, then decide which interfaces can be local and which remote, and finally, develop the application code with these choices in mind.  While EJB 2.0 local interfaces are extremely useful in some situations, the long-term costs of these choices, especially when changing requirements and component reuse are taken into account, need to be factored into the design decision.


	Q:
	What happens if remove( ) is never invoked on a session bean? 

	A:
	In case of a stateless session bean it may not matter if we call or not as in both cases nothing is done. The number of beans in cache is managed by the container.  In case of stateful session bean, the bean may be kept in cache till either the session times out, in which case the bean is removed or when there is a requirement for memory in which case the data is cached and the bean is sent to free pool. 


	Q:
	What is the difference between Message Driven Beans and Stateless Session beans? 

	A:
	In several ways, the dynamic creation and allocation of message-driven bean instances mimics the behavior of stateless session EJB instances, which exist only for the duration of a particular method call. However, message-driven beans are different from stateless session EJBs (and other types of EJBs) in several significant ways:  Message-driven beans process multiple JMS messages asynchronously, rather than processing a serialized sequence of method calls.  Message-driven beans have no home or remote interface, and therefore cannot be directly accessed by internal or external clients. Clients interact with message-driven beans only indirectly, by sending a message to a JMS Queue or Topic.  Note: Only the container directly interacts with a message-driven bean by creating bean instances and passing JMS messages to those instances as necessary.  The Container maintains the entire lifecycle of a message-driven bean; instances cannot be created or removed as a result of client requests or other API calls. 


	Q:
	How can I call one EJB from inside of another EJB? 

	A:
	EJBs can be clients of other EJBs. It just works. Use JNDI to locate the Home Interface of the other bean, then acquire an instance reference, and so forth. 


	Q:
	What is an EJB Context? 

	A:
	EJBContext is an interface that is implemented by the container, and it is also a part of the bean-container contract. Entity beans use a subclass of EJBContext called EntityContext. Session beans use a subclass called SessionContext. These EJBContext objects provide the bean class with information about its container, the client using the bean and the bean itself. They also provide other functions. See the API docs and the spec for more details


Accessing Files with applets

Access permission is granted with a policy file, and appletviewer is launched with the policy file to be used for the applet being viewed. 

Creating a Policy File 

Policy tool is a Java 2 Platform security tool for creating policy files. The Java Tutorial trail on Controlling Applets explains how to use Policy Tool in good detail. Here is the policy file you need to run the applet. You can use Policy tool to create it or copy the text below into an ASCII file. 

grant {

  permission java.util.PropertyPermission 


"user.home", "read";

  permission java.io.FilePermission 


"${user.home}/text.txt", "read,write";

};

Running an Applet with a Policy File 

Assuming the policy file is named polfile and is in the same directory with an HTML file named fileIO.html that contains the HTML to run the FileIOAppl applet, you would run the application in appletviewer like this: 

appletviewer -J-Djava.security.policy=polfile fileIO.html

Struts

What is Jakarta Struts Framework? - Jakarta Struts is open source implementation of MVC (Model-View-Controller) pattern for the development of web based applications. Jakarta Struts is robust architecture and can be used for the development of application of any size. Struts framework makes it much easier to design scalable, reliable Web applications with Java. 

What is ActionServlet? - The class org.apache.struts.action.ActionServlet is the called the ActionServlet. In the the Jakarta Struts Framework this class plays the role of controller. All the requests to the server goes through the controller. Controller is responsible for handling all the requests.

How you will make available any Message Resources Definitions file to the Struts Framework Environment? - Message Resources Definitions file are simple .properties files and these files contains the messages that can be used in the struts project. Message Resources Definitions files can be added to the struts-config.xml file through <message-resources /> tag.

Example:

<message-resources parameter=”MessageResources” />

What is Action Class? - The Action Class is part of the Model and is a wrapper around the business logic. The purpose of Action Class is to translate the HttpServletRequest to the business logic. To use the Action, we need to  Subclass and overwrite the execute()  method. In the Action Class all the database/business processing are done. It is advisable to perform all the database related stuffs in the Action Class. The ActionServlet (commad) passes the parameterized class to Action Form using the execute() method. The return type of the execute method is ActionForward which is used by the Struts Framework to forward the request to the file as per the value of the returned ActionForward object.

Write code of any Action Class? - Here is the code of Action Class that returns the ActionForward object. 

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 import org.apache.struts.action.Action;

 import org.apache.struts.action.ActionForm;

 import org.apache.struts.action.ActionForward;

 import org.apache.struts.action.ActionMapping;

public class TestAction extends Action

{

   public ActionForward execute(

     ActionMapping mapping,

     ActionForm form,

     HttpServletRequest request,

     HttpServletResponse response) throws Exception

{

       return mapping.findForward(\"testAction\");

}

 }

What is ActionForm? - An ActionForm is a JavaBean that extends org.apache.struts.action.ActionForm. ActionForm maintains the session state for web application and the ActionForm object is automatically populated on the server side with data entered from a form on the client side.

What is Struts Validator Framework? - Struts Framework provides the functionality to validate the form data. It can be use to validate the data on the users browser as well as on the server side. Struts Framework emits the java scripts and it can be used validate the form data on the client browser. Server side validation of form can be accomplished by sub classing your From Bean with DynaValidatorForm class. The Validator framework was developed by David Winterfeldt as third-party add-on to Struts. Now the Validator framework is a part of Jakarta Commons project and it can be used with or without Struts. The Validator framework comes integrated with the Struts Framework and can be used without doing any extra settings.

Give the Details of XML files used in Validator Framework? - The Validator Framework uses two XML configuration files validator-rules.xml and validation.xml. The validator-rules.xml defines the standard validation routines, these are reusable and used in validation.xml. to define the form specific validations. The validation.xml defines the validations applied to a form bean. 

How you will display validation fail errors on jsp page? - The following tag displays all the errors:

<html:errors/>

How you will enable front-end validation based on the xml in validation.xml? - The <html:javascript> tag to allow front-end validation based on the xml in validation.xml. For  example the code: <html:javascript formName=”logonForm” dynamicJavascript=”true” staticJavascript=”true” /> generates the client side java script for the form “logonForm” as defined in the validation.xml file. The <html:javascript> when added in the jsp file generates the client site validation script.

