

One week AICTE - STTP on Reactive Separations: Fundamentals Through Modeling and Simulation (23rd December - 27th December 2019)

Sponsored by All India Council for Technical Education (AICTE), New Delhi

Organized by

Departments of Chemical Engineering of

Dr. Babasaheb Ambedkar Technological University, Lonere, Dist. Raigad, M. S. 402 103, (<u>https://dbatu.ac.in</u>)

and

Padmabhooshan Vasantraodada Patil Institute of Technology, Budhgaon- Sangli

<u>Venue</u> Department of Chemical Engineering P. V. P. Institute of Technology Budhgaon Sangli

> <u>Coordinator</u> Dr. Yogesh S. Mahajan

<u>Co-coordinator</u> Prof. Unmesh S. Patil

Patron Professor V. R. Sastry Hon'ble Vice-Chancellor

Introduction

Chemical Engineering implies synthesis of engineering and chemistry. Chemical Engineering has witnessed transforming changes since its development. One of these is combining reaction and separation in a single vessel, namely Reactive Separation (RS), which is a relatively development combining reaction new and separation in one vessel. Industry follows the sequential approach of reaction followed by separation. RS may offer many advantages to processes, wherever it is applicable. It may bring in simplicity and novelty to the process flow sheet. RS is known for investment and operating cost savings garnered on successful scale-up to commercial applications.

Main advantages are in the energy and capital cost savings as well as in increased reaction efficiency. Sometimes, RS is the only method to effect separation where conventional means like distillation and extraction are not feasible. Truly speaking, RS is not new, its application dates back to the early days of gas handling, coal tar and petroleum refining and chemical production. Absorptive reaction processes were commercialized long back. But R&D activities related to the area of RS were not explored.

In late 1970s and early 1980s, commercial applications of Reactive Distillation (**RD**) or Catalytic Distillation (**CD**) for methyl acetate and methyl tertiary butyl ether (MTBE) production were introduced. Many applications using catalytic distillation are currently commercialized. Reactive Separation processes include Extraction (**RE**), Adsorption (or Chromatography **RC**), Crystallization (**RCr**), Membrane Separation or Membrane Reactor (**MR**) and miscellaneous applications. All these combinations involve coupling of reaction and one of the separations in one single vessel, due to which complexity of the combined process may shoot up multifold. Despite of the various advantages offered, several constraints may also be imposed with unforeseen difficulties.

The aim of this short term training program (STTP) is to cover the fundamentals of the various Reactive Separation processes in detail. It is also necessary to understand the fundamentals, the physical / chemical model be clearly understood. Modeling and simulation thus, plays a very important role in the understanding and application of RS to industrial problems. For each process, case studies will be explained so that the subject matter is clear through real life examples. The sessions will be delivered by eminent personalities in the field who have vast experience. Professors and experts from following organizations will deliver the sessions:

- I. IIT Bombay,
- II. ICT, Mumbai,
- III. NCL Pune,
- IV. NIT Warangal,
- V. Consultant from Pune and
- VI. DBATU, Lonere

There will be hands on sessions on MATLAB and simulation software which will help participants in understanding the concepts and applying them to real industrial problems. The purpose of this FDP is two - fold: first, the participants will be made aware of the fructifying changes in RS that have occurred over the years and secondly they will be motivated to consider one of these fields by active participation through research and development.

Eligibility and Selection Criteria

The program is open to teachers of AICTE / UGC approved Institutions and working in the fields of Chemical / Petrochemical / Petroleum / Polymer and allied branches and Engineering chemistry as well as Ph. D. students (Research Scholars). A few industry participants can also be accommodated. The program will accommodate at least 40 participants on '**first come first served**' basis and hence it is necessary to submit duly completed applications by registered post as well as by email as early as possible. The selected participants will be informed by email well in advance. So, it is required to submit correct email ID.

The University and the Departments

About the University:

Dr. Babasaheb Ambedkar Technological University is located at Lonere, the place in the ranges of Western Ghat, at the base of Raigad fort, the place from where Chhatrapati Shivaji Maharaj administered his major activities. The University was established in the year 1989 by the Government of Maharashtra and it is making its mark in the field of research and technological services through its dedicated faculty and disciplined students. Presently, the University conducts eight B. Tech. and six M. Tech. programs in various disciplines of engineering and technology and also Ph.D. in various disciplines of engineering and technology. The University has become the affiliating Technological University of Maharashtra from 2016 by the Maharashtra Act No. XXIX of 2014.

The Chemical engineering department of the university is well known for its well qualified staff and research activities. The department offers B. Tech., M. Tech. and Ph.D. in Chemical Engineering and has excellent reputation.

About PVPIT:

The institute was established in the year 1983 by great visionary Padmabhooshan Dr. Vasantraodada Patil, initially with five under graduate programs with the sole objective of rural development through technical education. The institute is approved by AICTE New Delhi, and is affiliated to DBATU Lonere. Currently the institute is offering eight programs in U.G. as well as P.G. The institute is reputed for its high academic standards, well maintained discipline and excellent infrastructural facilities. The institute is located at Budhgaon, on Sangli -Tasgaon road and is about 7 km from Sangli.

About Chem. Eng. Dept. at PVPIT

The department of Chemical Engineering at PVPIT was established in the year 1983, initially with intake capacity of 30, later increased to 60 in the year 1998. The department has well qualified, experienced & devoted faculty. The department is well equipped with all the laboratory facilities and has strong alumni base across India and abroad. The department has consistent placement record and is continuously improving to offer excellent learning environment to students.

Accommodation

Free multi-seated accommodation will be provided in college Guest House / College hostels as per availability.

Registration fee

There is no registration fee for the course.

Important Dates:

- Last date of receipt of application forms duly filled in: 10th December 2019. However, since seats are 40, early submission would ensure the seat.
- Information of selection: before 15th December 2019.

Instructions:

- Participants from Recognized Institutes (Maharashtra as well as other States) will be given actual travel expenditure (generally second class train fare by the nearest route) as per AICTE / University norms.
- It is recommended to bring scientific calculators. It is also desirable, if possible, to bring Laptops with Microsoft Excel® (with solver option enabled) and Matlab® installed for better benefits, although it is not compulsory.
- Duly filled and signed forms may be scanned and sent via email as an advance copy.
- The course is fully **sponsored by AICTE**. Lodging, Boarding and Course material will be provided to all participants.
- Kindly note that the course will be conducted at the PVPIT campus.

<u>Application form</u> One week AICTE – STTP on 'Reactive Separations: Fundamentals Through Modeling and Simulation' (23rd December - 27th December 2019) (Sponsored by: AICTE, New Delhi)

- i. Name in full:
- ii. Date of Birth:
- iii. Designation: _____
- iv. Institution:
- v. Whether the Institution is AICTE / UGC recognized:
- vi. Highest Educational Qualification: a.Experience (Teaching / Research / Industry, in Years):
- vii. Subjects Taught over last three years:
- viii. Address for correspondence with email ID, alternate email ID, Mobile and Phone No.: ______

Declaration:

The information provided above is true to the best of my knowledge. If selected, I agree to abide by the rules and regulations of the course and shall attend the course for the entire duration. I also undertake to inform the Coordinators in case I am unable to attend the course, if selected.

Place:

Date:

Signature of applicant with name

Sponsorship Certificate

This is to certify that Dr. / Mr. / Mrs. / Ms. is an employee of this Institute and is hereby sponsored to participate in the One week AICTE _ STTP on **'Reactive** Separations: Fundamentals Through Modeling and Simulation' to be held 23rd 27th between December -December 2019

Place: _____

Date: _____

<u>Signature of Head of Institution</u> (With seal)

Please send completed application forms to either of the coordinators so as to reach early:

- Dr. Yogesh S. Mahajan, Dept. of Chemical Engineering, Dr. B. A. Tech. University, Lonere, Tal. Mangaon, Dist. Raigad, Maharashtra 402103 (Mob: 9421939941, 9923188748, Email: ysmahajan@dbatu.ac.in, yogesh_mahajan66@yahoo.com)
- Prof. Unmesh S. Patil Dept. of Chemical Engineering, PVPIT, Budhgaon, Sangli Dist Sangli, Maharashtra, 416304 Mob: 9850994794
 Email: pvpitchemical@gmail.com

(The form and the certificate can also be neatly typed and used, if needed. Please send a scanned copy of the signed form to the coordinators for fast registration at the email addresses mentioned above. The coordinators may also be contacted for clarifications, if any)

One Week STTP

on

"Reactive Separations: Fundamental through modeling and simulation"

(23rd Dec 2019 to 27th Dec 2019)

Sponsored by

All India Council for Technical Education (AICTE), New Delhi

Organized by

Chemical Engineering Department, Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad-MH, 402 103

Coordinator

Dr. Y.S.Mahajan, Professor, Department of Chemical Engineering, Dr. Babasaheb Ambedkar Technological University, Lonere, Raigand-MH

Venue

Chemical Engineering Department, PadmabhooshanVasantraodada Patil Institute of Technology Budhgaon Sangli-MH

Contents

Topic	Page No.
Reactive Distillation (Dr. Y.S.Mahajan, Professor, Dr.DBATU Lonere)	1
Reactive Separation (Dr.P.G.Jadhav, Professor, SGGS Nanded)	34
Modeling of Membrane separation (Dr.Ratnadeep Joshi, Professor, MIT Pune)	140
Chemical Engineering Thermodynamic (Dr. S.S. Bhagwat, Professor, ICT Mumbai)	194
Membrane Seperations and Membrane Reactor (Dr. V.S.Spakal, Professor, SGBAMU Amaravati)	254

Reactive Distillation: Facts and Practice

1

Dr. Yogesh S. Mahajan Department of Chemical Engineering Dr. B. A. T. University, Lonere M. S. 402 103

Reactive Distillation: Facts and Practice

For every problem under the sun, There is a way or there is none! If there is one, try to find it!! If there is none, never mind it!!!

2

Reactive Separations

3

Reactive Distillation: Case Study I

Cyclohexanone: 156, Product: 268, Water: 100, Azeotrope 95

BRD and CRD Runs

BRD (100 gm cat.)	% Conversion	% Selectivity
500 watt	93.45	94.13
750 watt	94.2	88.23
1000 watt	97.8	85.36

CRD: Flow rate (ml/hr)	Catalyst loading (gm)	% Conversion	% Selectivity
245	50	76.5	81
540	100	74.82	85
540	50	74.11	88

Batch kinetics: Conversion 28 - 45%; Selectivity 75 - 86%; BRD lab scale: Conversion 94%; Selectivity 70%

27

Conclusions

33

33

RD can be effective provided:

- 1. Reaction and Distillation Conditions allow so
- 2. Care is taken to utilize system properties
- 3. Economy is favorable

Remember again!

For every ailment under the sun, there is a remedy or there is none! If there is one, try to find it, else never mind it!!

Review of Membrane Technology for the renovation of Waste to Wealth

By

Dr. P. G. Jadhav

Associate Professor & Head

Department of Chemical Engineering

Shri Guru Gobind Singhji institute of Engineering & Technology Vishnupuri Nanded

- > Brief Overview of Membrane Technology
- Industrial Effluent Treatment for Solvent Recovery
- Membrane Bioreactor & Application
- > Conversion of Contaminated Water Resources to Drinkable Water
- Membranes for Waste to Energy Generation
- Application of Membrane Technology for Food & Health

Membrane Definition & Mass Transfer in Porous Media 36

A Membrane is a thin barrier which allows selective & controlled transfer of a species from one bulk phase to another

Membrane Separation Techniques

Polymeric Spiral Wound Membrane

Polymeric Hollow fiber Membrane

WHY MBR?

1. REUSE QUALITY EFFLUENT

Effluent BOD < 5 mg/L

Effluent TSS < 5 mg/L

Total Phosphorus < 0.5 mg/L

Total Nitrogen < 10 mg/L

Ammonia < 1 mg/L

Turbidity < 0.2 NTU

Up to 6 log removal of bacteria*

Up to 4 log removal of viruses*

SILT DENSITY INDEX < 3 (SUITABLE FOR RO FEED)

Conclusions: Approach to Water Purif. & Reject Management

137

CONCLUSION

Membrane Technology represents a highly versatile range of technologies that potentially provide solutions to technological problems in wide variety of Industries as well as Society

REACTIVE SEPARATIONS MEMBRANE BIOREACTOR FOR WASTEWATER TREATMENT Design Considerations Aspen HYSYS Simulation

Dr Ratnadip R Joshi

Asso Dean: Quality Assurance Associate Professor

Department of Chemical, Petroleum and Petrochemical Engineering MAEER's Maharashtra Institute of Technology Dr Vishwanath Karad MIT World Peace University 124, Paud Road, Kothrud, Pune-411038, INDIA.

ratnadip.joshi@mitpune.edu.in

09423332754

Outcomes of this session:

At the end of this session, the participants shall be able to:

- <u>Review</u> the developments of wastewater treatments
- <u>Show</u> how Membrane Bioreactors (MBRs) can be designed
- <u>Share</u> an example of how a *MBR can be* modeled with facilitation of ICT enabled tools
- Encourage use of process simulators for simulation of MBR

CONTENTS

24 December 2019

अमंत्रमक्षरं नास्ति नास्ति मूलमनौषधम् । अयोग्य: पुरुषो नास्ति योजकस्तत्र दुर्लभ :

ॐ सह नाववतु । सह नो भुनक्तु । सह वीर्यं करवावहे । तेजस्वि नावधीतमस्तु मा विद्विषावहे । ॐ शान्तिः शान्तिः ॥ Om Saha Nau-Avatu | Saha Nau Bhunaktu | Saha Viiryam Karavaavahai | Tejasvi Nau-Adhiitam-Astu Maa Vidvissaavahai | Om Shaantih Shaantih Shaantih ||

Meaning:

Om, May God Protect us Both (the Teacher and the Student),
2: May God Nourish us Both,
3: May we Work Together with Energy and Vigour,
4: May our Study be Enlightening and not give rise to Hostility,
5: Om, Peace, Peace, Peace.

Research Papers:

- R. Rautenbach and R. Mellis, Wastewater treatment by a combination of bioreactor and nanofiltration, Desalination, 95 (1994) 171–188.
- J.-H. Choi, S. Doccko, K. Fukushi and K.Yamamoto, A novel application of a submerged nanofiltration membrane bioreactor for wastewater treatment, Desalination, 146 (2002) 413–420.
- J.-H. Choi, K. Fukushi and K. Yamamoto, Comparison of treatment efficiency of submerged nanofiltration membrane bioreactors using cellulose triacetate and polyamide membrane, Water Sci. Technol., 51 (2005) 305–312
- Ahn, K-H., Song, K-G., Eulsaeng, C., Jinwoo, C., Hojoon, Y., Seockheon, L. and Jaeyoung, K. (2003). Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic /anaerobic membrane bioreactor (SAM) process. *Desal.* 157, 345-352
- Ahn, K-H., Cha, H-Y., and Song, K-G. (1999). Retrofitting municipal sewage treatment plants using an innovative membrane-bioreactor system. *Desal.* 124, 279-286
- T. Stephenson, S.J. Judd, B. Jefferson and K. Brindle, Membrane Bioreactors for Wastewater Treatment. WA Publishing, London, 2000.
- National Environment Protection Agency, PR, China, State Environmental Statistic Report, 2003.
- G. Liu, L.C. Lei and P.L. Cen, Wet air oxidation of printing and dying wastewater. J. Zhejiang University, 35(1) (2001) 37–40.

24 December 2019

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Thermo

Chemical Engineering Thermodynamics - An Overview

Sunil S. Bhagwat Chemical Engineering Department Institute of Chemical Technology

Nov 2019

Why things happen

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Thermo SSB/ICT

- Nature has many things happening.
- Certain things do not happen ever (on their own)
- Heat flow, water flow...
- Things can sometimes be forced to happen (with efforts)
- A natural driving force
- Rate ∝ (driving force)/resistance
- An age old search Why things happen the way they do? Who gains from it?

Thermo SSB/ICT

- The use of Chemical Engineering Thermodynamics is primarily concerned with the design and performance of a chemical or process plant.
- Many of these processes do not go to completion.
 - e.g. reaction of $N_2 + H_2$ to give ammonia or
 - $\bullet\,$ absorption of ${\it CO}_2$ in monoethanolamine or
 - extraction of acetic acid from water by toluene or
 - precipitation of a solute from a solution.
- The degree to which these can complete is of crucial importance.
- This comes through the concept of equilibrium between phases and between reactants.

Multiple reactions

Thermo SSB/ICT

2 mol methane with 3 mol steam result in an equilibrium mixture of CO, CO_2 , H_2 , CH_4 and H_2O at 1000K, 1bar

	$\delta H^o_{f,298.16K}$	$\delta G^o_{f,298.16K}$
	KJ/mol	KJ/mol
СО	-110.6	-137.4
<i>CO</i> ₂	-393.8	-394.6
H_2O	-242.0	-228.8
SO ₂	-296.83	-300.19
SO ₃	-395.72	-371.06
NH ₃	-46.11	-16.45
CH ₄	-74.52	-50.46

Multiple reactions

Thermo SSB/ICT

2 mol methane with 3 mol steam result in an equilibrium mixture of CO, CO_2 , H_2 , CH_4 and H_2O at 1000K, 1bar

	$\delta H^o_{f,298.16K}$	$\delta G^o_{f,298.16K}$
	KJ/mol	KJ/mol
СО	-110.6	-137.4
<i>CO</i> ₂	-393.8	-394.6
H_2O	-242.0	-228.8
SO ₂	-296.83	-300.19
SO ₃	-395.72	-371.06
NH ₃	-46.11	-16.45
CH ₄	-74.52	-50.46

Thermo

ICT, Mumbai THANK YOU ss.bhagwat@ictmumbai.edu.in

kinetic study on drinking water denitrification using a membrane bioreactor

By Dr. V.S.Sapkal

Dept. of Chemical Technology Sant Gadgebaba Amaravati University, Amaravati

During the biological process of denitrification, nitrate is first microbiologically reduced to nitrate and nitrite, then nitric oxide (NO) and nitrous oxide (N2O), and finally to molecular nitrogen(N2)

The biological removal of nitrate can be affected by various factors: different types of external C sources, various types of micro-organisms, various operational parameters such as C/N ratios, temperature, pH, dissolved oxygen, hydraulic retention time, nitrate and nitrite concentratios and mixed liquor suspended solids.

In addition, nitrate removal highly depends on the substrate amount that influences the denitrification rate, denitrification yield,

The influent NO3-N concentration was 80 mg L-1 (carbon to nitrogen ratio C/N = 1.88/1), and the average denitrification efficiency achieved 84 to 89%.

During the research when the C/N ratio increased from 1.5 up to 2.5, the removal efficiency increased up to 95%.

To develop a kinetic model to describe the microbial growth of drinking water denitrification using MBR

A kinetic analysis was conducted by assuming Monod kinetics to be appropriate for substrate consumption, and a constant biomass concentration Determination of the Monod kinetic parameters was based on the experimental values for the mass concentration of substrate at the outflow (γS), and the calculated dilution rates (*D*).

The calculated value of the yield coefficient was YX/S = 0.35 mg biomass mg-1 COD (R2 = 0.94), which meant that approximately 35% of biomass was produced regarding the consumed substrate

Drinking water denitrification using a membrane bioreactor was studied and the validity verified regarding the Monod kinetics of microbial growth.

The maximum specific growth-rate was determined to be 0.31 h-1, half-saturation constant 5.4 mg L-1 and a yield coefficient of 35%

"Reactive Separations: Fundamentals through Modelling and Simulation"

(23rd December to 27th December, 2019)

List of Participants

Sr. No.	Name	email ID	Designation	Name of Institute (Academic)	Mobile no	Remark
1.	Mr Rahul Vishnupant Hinge	hingerv@pravaraengg.org.in	Asst Professor	P.R.E.C, Loni	9922402840	
2.	Dr SandeepAvinash Thakur	satsan17@rediffmail.com	Asst Professor	SSBTS, COET, Jalagaon	9421891390	
3.	Miss Asmita Pravin Patil	asmitapatil10@gmail.com	Asst Professor	PVPIT, Budhgaon	9028711267	Internal Participant
4.	Mr Sachin Bhikchand Divate	sachindivate2007@rediffmail. com	Asst Professor	P.R.E.C, Loni	7588169546	
5.	Miss Ujwala Ramchandra Shinde	ushinde32@gmail.com	Asst Professor	PVPIT, Budhgaon	8530225453	Internal Participant
6.	Mrs Pallavi Chandrakant Kale	kalepallavi2911@gmail.com	Asst Professor	PVPIT, Budhgaon	8668242886	Internal Participant
7.	Prof Shrikrishna Babar Bobde	bobadesb@gmail.com	Asst Professor	F.A.M.T, Ratnagiri	8888952450	
8.	Prof Sudhakar Ramnath Kadam	sudhakar@yahoo.com	Asst Professor	P.R.E.C, Loni	7588513541	
9.	Dr Nitin Gajanan Kanse	nitin_475@yahoo.co.in	Asst Professor	F.A.M.T, Ratnagiri	9960835696	

"Reactive Separations: Fundamentals through Modelling and Simulation"

Sr. No.	Name	Email ID	Designation	Name of Institute (Academic)	Mobile no	Remark
10.	Mr Dattatray Chimaji Dengale	dattatray.dengale@famt.ac.in	Asst Professor	F.A.M.T, Ratnagiri	8208354885	
11.	Mr Abhijeet Dilip Patil	adpchemical@gmail.com	Asst Professor	PVPIT, Budhgaon	9511786987	Internal Participant
12.	Dr Sanjay Laxman Bhagat	callbsanjay@yahoo.com	Asso. Professor	PVPIT, Budhagaon	9921133349	Internal Participant
13.	Mr Bhushan Shamrao Satvekar	bhushans7676@gmail.com	Asst Professor	PVPIT, Budhgaon	9022608464	Internal Participant
14.	Dr. Vivek Digambar Talnikar	vdtalnikar@gmail.com	Asso. Professor	GIT, Lavel	9422727389	
15.	Mr Sudhir S Gandhi	ssgandhi@chem.maepune.ac.in	Asst Professor	MIT AOE, Pune	9764143441	
16.	Mr Sanjeev Yashwant Pawar	sanjeevpawar.chem@yahoo.co	Asso. Professor	PVPIT, Budhagaon	8411009045	Internal Participant
17.	Mr Vikas Balasaheb Pawar	vikas93@rediffmail.com	SG Lecturer	PVPIT, Budhgaon (Diploma)	9890156076	
18.	Mr Suresh Dhanyakumar Chougule	bandu_chougule@yahoo.co.in	Lecturer	PVPIT, Budhgaon(Diploma)	9921814902	
19.	Mr Milind Madhav Joshi	milind_18@rediffmail.com	Lecturer	PVPIT, Budhgaon (Diploma)	9325550469	

"Reactive Separations: Fundamentals through Modelling and Simulation"

20.	Mr Sumit Sanjay Potdar	sumitpotdar3@gmail.com	Lecturer	PVPIT, Budhagaon (Diploma)	7385400766	
Sr. No.	Name	Email ID	Designation	Name of Institute (Academic)	Mobile no	Remark
21.	/Mrs Arati Arvind Patil	sumansurve@gmail.com	Lecturer	PVPIT, Budhagaon (Diploma)	8928006969	
22.	Mr Sameer Vijay Padia	sameerpadia1001@gmail.com	Lecturer	PVPIT, Budhagaon (Diploma)	9922472362	
23.	Mr Vivek Sadashiv Kore	vivekskore@pvpitsangli.edu.in	Asst Professor	PVPIT, Budhgaon	9921565669	Internal Participant
24.	Mr Unmesh S Patil	unmeshp9@gmail.com	AssoProfessor	PVPIT, Budhagaon	9850554754	Internal Participant
25.	Mr Prashant Bhimrao Dhanke	dbpchem@gmail.com	Asst Professor	PVPIT, Budhgaon	9226012686	Internal Participant
26.	Mr Ravindra Laxman Nibe	nibere@pravaraengg.org.in	Asst Professor	P.R.E.C, Loni	9975776171	
27.	Mr Kalyan Ishwar Patil	kip@tkietwarana.ac.in	Asso Professor	TKIET, Warananagar	9822041691	
28.	Mrs Shilpa Sarjerao Patil	shilpaspatil@tkietwarana.ac.in	Asso Professor	TKIET, Warananagar	9850963115	
29.	Miss Farahanaz M Bagwan	bagwanfarahanaz@gmail.com	Asst Professor	DYPCET, Kolhapur	8208590322	

"Reactive Separations: Fundamentals through Modelling and Simulation"

30.	Dr Vishal Jarardan Suryavanshi	vishal.suryavanshi16@gmail.co m	Asst Professor	PVPIT, Budhgaon	9975758502	Internal Participant
31.	Mr Ekant Das	ekantdas@gmail.com	Research Scholar	DBATU Lonere	9975776171	
Sr. No.	Name	Email ID	Designation	Name of Institute (Academic)	Mobile no	Remark
32.	Dr Swapnil Dharaskar	<u>swapnildharaskar11@gmail.co</u> <u>m</u>	Asso Professor	PDPU, Gandhinagar	7600924111	
33.	Mrs Vijaya B. Satghare	satghare.vijaya@gmail.com	Asst Professor	UICT, KBCNMU, Jalgaon	8830123897	
34.	Dr Utkarsh Maheshwari	drutkarshm@gmail.com	Asso Professor	DYPIEMR, Akurdi	9772976299	
35.	Mr Dhundiraj P Deshpande	dhundiraj12@gmail.com	Asst Professor	DYPIEMR, Akurdi	7588189574	
36.	Mr Pankaj N Vardhe	vardhepankaj@gmail.com	Asst Professor	DYPIEMR, Akurdi	8011491881	
37.	Mr Ramsingh V Thakur	rvt114@gmail.com	AsstProfessor	DYPIEMR, Akurdi	7077109878	
38.	Dr Shailesh Adinath Ghodke	saghodke@gmail.com	AssoProfessor	DYPIEMR, Akurdi	8275889853	
39.	Dr Kishor Tukaram Jadhav	ktjadhav1@gmail.com	Professor	DYPCET, Kolhapur	9158195999	
40.	Mr Manishkumar A Patil	manishkumarpatil@gmail.com	Asst Professor	DYPCET, Kolhapur	8055719406	

"Reactive Separations: Fundamentals through Modelling and Simulation"

41.	Mr Kiran M Patil	kmpatildyp@gmail.com	Asst Professor	DYPCET, Kolhapur	9028397585	
42.	Dr Rahul Appasaheb Patil	rahulapatil1978@gmail.com	Asst Professor	DYPCET, Kolhapur	9823167767	
Sr. No.	Name	Email ID	Designation	Name of Institute (Academic)	Mobile no	Remark
43.	Mr Arvind Vilas Patil	arvindpatil2899@gmail.com	Asst Professor	DYPCET, Kolhapur	9637303999	
44.	Mr Rahul Datttary Mahajan	rahuldmahajan22@gmail.com	Asst Professor	DYPCET, Kolhapur	8669116943	
45.	Mr Pushpadant Mahavir Magdum	pmmagdum.instru@pvpitsangl i.edu.in	Asst Professor	PVPIT, Budhgaon	7620948400	Internal Participant
46.	Mr Sandeep S Haral	sandeepsharal@gmail.com	Lecturer	Govt Polytechnic, Jalna	9823312442	
47.	Mr Sagar Mahadev Jangam	sagarjangam.9026@gmail.com	Asst Professor	DBATU Loenre	9096090954	
48.	Mr Raju Kappusing Marag	raju.marag@famt.ac.in	Asst Professor	F.A.M.T, Ratnagiri	9890701143	
49.	Mr Manoj Namdev Chavan	gmanojchavan@gmail.com	SG Lecturer	PVPIT, Budhgaon (Diploma)	9860028162	
50.	Mr Vikas L Karade	vlkarade.instru@pvpitsangli.edu .in	Asst Professor	PVPIT, Budhgaon	9850220760	Internal Participant

"Reactive Separations: Fundamentals through Modelling and Simulation"

51.	Mr Sagar S Sutar	sssutar.instru@pvpitsangli.edu.i	Asst Professor	PVPIT, Budhgaon	88856912533	Internal
		n				Participant